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Abstract: In this paper we introduce a new methodology to determine an optimal coeffi-
cient of penalized functional regression. We assume the dependent, independent variables
and the regression coefficients are functions of time and error dynamics follow a stochas-
tic differential equation. First we construct our objective function as a time dependent
residual sum of square and then minimize it with respect to regression coefficients sub-
ject to different error dynamics such as LASSO, group LASSO, fused LASSO and cubic
smoothing spline. Then we use Feynman-type path integral approach to determine a
Schrödinger-type equation which have the entire information of the system. Using first
order conditions with respect to these coefficients give us a closed form solution of them.
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1. Introduction

Functional regression has been popular in recent times (Ramsay, 2004; Ramsay and Silverman,
2007). Different penalizations such as least absolute shrinkage and selection operator (LASSO),
ridge regression, standard Lp-norm, elastic net regression, Group LASSO, fused LASSO, bridge
regression and different types of splines have been used in statistical literature for variable
selection. Following Huang and Su (2021) we know, penalized regression has been popularized
after publication of Eilers and Marx (1996) and Ruppert, Wand and Carroll (2003). A mean
squared error of penalized spline estimators under a white noise model was obtained in Hall and
Opsomer (2005). Furthermore, different approximation of penalized spline estimators have been
done in Li and Ruppert (2008), Wang, Shen and Ruppert (2011), Schwarz and Krivobokova
(2016) and Lai and Wang (2013). These works have been used in closed-form expressions of
penalized spline estimators which are only available in the regression setting where all the
variables are time independent. When such expressions are not available in other estimation
contexts, such as estimation of density functions or conditional quantile functions, Huang and Su
(2021) or furthermore, when the penalization function is itself a stochastic differential equation,
existing asymptotic approaches extended. Then we need a path integral approach to determine
regression coefficients in Euclidean field (Pramanik, 2020; Pramanik and Polansky, 2020a,b;
Pramanik, 2021a,b) and for generalized tensor field (Pramanik and Polansky, 2019).
In this paper we provide a dynamic framework of a time dependent residual sum of square and

minimize it with respect to regression coefficients where coefficient dynamics follow a stochas-
tic differential equation. We construct a quantum Lagrangian for equal in length small time
interval with respect to a positive penalization parameter and use a Feynman-type path inte-
gral approach to determine a Schrödinger type equation (Pramanik, 2016; Hua, Polansky and
Pramanik, 2019; Pramanik, 2020, 2021a; Polansky and Pramanik, 2021) and optimal values of
the regression coefficients are the first order condition of it (Baaquie, 2007; Feynman, 1949;
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Pramanik, 2021c) and Fujiwara (2017); Pramanik and Polansky (2021). As at the beginning
of a new time interval we do not have any prior knowledge about the future, a conditional
expectation until that initial time point of the residual sum of squares is used as our objec-
tive function. In examples we show closed form of the regression coefficients under different
penalizations. Traditional literature of this type regression does not consider diffusion part of
the process. Hence, we cannot see the bigger picture of it and more generalization towards
Brownian motion is needed.
Before constructing the quantum Lagrangian for small time intervals and path integral of the

system we showed those two integrals exist under certain assumptions, which will be discussed
in the next section. Main motivation of using Feynman path integral approach is it considers
all possible paths between two time points and eliminates the extremes by Lebesgue-Riemann
lemma to determine the minimized action locally. Furthermore, this approach gives solution
for more generalized system of equations where Pontryagin’s optimal principle fails (Baaquie,
2007; Bellman, 1966) and Yeung and Petrosjan (2006).

2. Preliminaries

Consider a sample of N time dependent cases each of which consists of J covariates such that
for an observation i we have the following regression model

Yi(s) =
J∑

j′=1

βj′(s)Xij′(s) + Ui(s),

where βj′(s) ∈ β(s) ∈ RJ for all j′ = 1, ..., J , Yi(s) ∈ R is ith outcome and Xij′(s) ∈ R is
ith independent variable corresponding to deterministic βj′(s) coefficient, with i = 1, ..., N and
time s ∈ [0, T ] and, the error term Ui ∈ U ∈ RN is assumed to be a stochastic process expressed
by the stochastic differential Equation (1) below.
Therefore, to obtain an optimal regression coefficient the objective is to minimize time de-

pendent residual sum of square (RSS)

XO(s,β,X) =
N∑
i=1

[
Yi(s)−

J∑
j′=1

βj′(s)Xij′(s)

]2

,

with respect to βj′(s) ∈ β(s) ∈ RJ Furthermore, we assume the N -dimensional error vector
U(s) follows a stochastic differential equation,

dU(s) = µ[s,β(s),X(s)]ds+ σ[s,β(s),X(s)]dB(s), (1)

where µ[s,β(s),X(s)] is a N ×1-dimensional drift vector, σ[s,β(s),X(s)] a N ×p-dimensional
diffusion matrix andB(s) is a p-dimensional Brownian motion. The mappings of µ[s,β(s),X(s)]
and σ[s,β(s),X(s)] are jointly measurable and continuous. For s ∈ [0, T ] the mapping µ[s,β(s),X(s)] :
C0([0, T ],RJ ,RN×J) → L(Rn,RJ ,RN×J) and σ[s,β(s),X(s)] : C0([0, T ],RJ ,RN×J)
→ L(Rn,RJ ,RN×J) are measurable with respect to the σ-algebra generated by the cylindri-
cal sets with bases over the the time interval [0, T ] in continuous function vanishing at the
infinity C0([0, T ],RJ ,RN×J), and the Borel σ-algebras in RJ , RN×J and a linear functional
L(Rn,RJ ,RN×J) on a filtration Fs starting at time s, where time interval [0, T ] has been divided
into n small equal-lengthed subintervals. If above conditions hold, then for initial condition
X0 ∈ R(N×J)×1 Krylov’s theorem tells that, there exists a weak solution of coefficient dynam-
ics represented by the Equation (1) Krylov (2008). The drift coefficient µ[s,β(s),X(s)] of the
coefficient dynamics have different forms like for LASSO with m covariates it is

∑m
j′=1 |βj′(s)|,
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ridge regression
∑m

j′=1 β
2
j′(s), standard Lp- norm [

∑m
j′=1 |βj′(s)|p](1/p), elastic net regression

(1 − α)||β(s)||1 + α||β(s)||22 with α ∈ [0, 1], group LASSO
∑m

j′=1 β
T
j′(s)Kj′(s)βj′(s) with Kj′

being a positive definite matrix, fused LASSO α
∑m

j′=1 |βj′(s)|+(1−α)
∑m

j′=1 |βj′(s)−βj′−1(s)|
and bridge regression (

∑m
j′=1

√
|βj′(s)|)2 which we will discuss in examples. Furthermore, as we

are concentrating in dynamic optimization, our objective is to

min
{β′

j∈β}
XO(s,β,X) = min

{β′
j∈β}

E
∫ T

0

N∑
i=1

[
Yi(s)−

J∑
j′=1

βj′(s)Xij′(s)

]2

ds, (2)

subject to the Equation (1). To solve for the optimal coefficients we use Feynman-type path
integral approach Feynman (1949) where we define a quantum Lagragian action function for
small time interval [s, τ ] ⊆ [0, T ] as

Ls,τ (X) = Es

∫ τ

s




N∑
i=1

[
Yi(ν)−

J∑
j′=1

βj′(ν)Xij′(ν)

]2

dν

+ λ[µ[ν,β(ν),X(ν)]dν + σ[ν,β(ν),X(ν)]dB(ν)−∆U(ν)]

}
, (3)

where λ > 0 is the time independent penalization parameter. We will show the above integral
in Equation (3) measurable and then Feynman path integral of it is also measurable in RN×J

Feynman (1949). Later part of this paper in Proposition 2 we will discuss about the closed form
solutions of these coefficients under smoothing spline environment.

3. Definitions and Assumptions

Definition 1. Suppose a space X is Hausdorff. If for every point x ∈ X and every closed set
Z ⊆ X not containing x, there exists a continuous function gc : X → [0, 1] such that, gc(x) = 1
and gc(z) = 0 for all z ∈ Z then, X is completely regular Bogachev (2007).

Definition 2. For a family M of Radon measures on a topological space X if for every ε > 0,
there exists a compact set κε such that |ρ|(X \κε) < ε for all ρ ∈ M then X is called uniformly
tight Bogachev (2007).

Furthermore, from Definition 2 and Prohorov Theorem we know, if M is a family of Borel
measures on X then every sequence {ρn}n≥1 ⊂ M contains a weakly convergent subsequence or
M is uniformly tight and bounded (Bogachev, 2007; Prokhorov, 1956). In order to understand
projective system of spaces let us assume T be a directed set and let {Xn}n∈T with γ be a
continuous mapping such that for two indices n ≥ m the condition γmn : Xn → Xm and for
η ≥ n ≥ m, γmn ◦ γnη = γmη hold. Furthermore, suppose X be a space such that mapping
γm : X → Xm is consistent with γnm by the mapping γm = γmn ◦ γn for all m ≤ n. Then
Xm is the inverse limit space. As X = R∞ is an example of this space, the dimension of our
independent variables XnJ = Rn×J consists of all sequences of the form (X1, ..., XnJ , 0, ..., 0),
and γnJk and γnJ are natural projections. Now consider spaces Xn are equipped with Borel
σ-algebra Bn and measures ρn on Bn such that γmn are measurable. Then for m ≤ n

γmn(ρn) := ρn ◦ γ−1
mn = ρm,

is a necessary condition. Furthermore, for ρ is a Radon measure on X, ρ ◦ γ−1
n = ρn, ∀n exists

iff for any ε > 0, ∃κε ⊂ X with ρn(γn(κε)) ≥ 1− ε, ∀n Bogachev (2007). We use this result to
prove Lemma 1.
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Assumption 1. For time interval [s, s+ ε] ⊂ [0, T ], where ε ↓ 0 the filtration space starting at
time s denoted by Fs, is a vector lattice of on the non-empty set Ω such that for point-transition
Ψs(X) and quantum Lagrangian Ls,s+ε,

Ψs,s+ε(X) =
1

N f̃
s

∫

RN×J

f̃dX,

where f̃ = exp [−εLs,s+ε(X)] Ψs(X) and N f̃
s > 0 is a normalizing constant of f̃ ∈ Fs. For

another function g̃ ∈ Fs with normalizing constant N g̃
s > 0 define

Ψ̃s,s+ε(X) =
1

N g̃
s

∫

RN×J

g̃dX,

such that max(f̃ , g̃) ∈ Fs, min(f̃ , g̃) = −max(f̃ , g̃) and |f̃ | ∈ Fs.

Assumption 2. The set of all bounded functions F+
s of f̃ such that for a non-negative increas-

ing sequence f̃k ∈ Fs the condition f̃ = limk→∞ f̃k holds. As the sequence {f̃k} is uniformly
bounded, we assume the sequence {Ψk

s,s+ε} is increasing and bounded where,

Ψk
s,s+ε(X) =

1

N f̃k
s

∫

RN×J

f̃kdX.

Assume Ψs,s+ε(X) = limk→∞ Ψk
s,s+ε(X). Then For all f̃ , g̃ ∈ F+

s and f̃ ≤ g̃ there exists a

measure (N f̃
s )

−1dX such that following conditions hold,
1. Ψs,s+ε(X) ≤ Ψ̃s,s+ε(X);
2. Ψ∗

s,s+ε(X) = Ψs,s+ε(X) + Ψ̃s,s+ε(X), where

Ψ∗
s,s+ε(X) =

1

N
(f̃+g̃)
s

∫

RN×J

(f̃ + g̃)dX.

3. For a constant c ∈ [0,∞), Ψc
s,s+ε(X) = cΨs,s+ε(X) where,

Ψc
s,s+ε(X) =

1

N
(cf̃)
s

∫

RN×J

(cf̃)dX.

4. For all min(f̃ , g̃) ∈ F+
s and max(f̃ , g̃) ∈ F+

s we have Ψs,s+ε(X) + Ψ̃s,s+ε = Ψmin
s,s+ε(X) +

Ψmax
s,s+ε(X) where

Ψmin
s,s+ε(X) =

1

N
min(f̃ ,g̃)
s

∫

RN×J

min(f̃ , g̃)dX

and

Ψmax
s,s+ε(X) =

1

N
max(f̃ ,g̃)
s

∫

RN×J

max(f̃ , g̃)dX.

5. limk→∞ f̃k ∈ F+
s for every uniformly bounded sequence of f̃k ∈ F+

s , and one has Ψlim
s,s+ε(X) =

limk→∞ Ψk
s,s+ε(X) where

Ψlim
s,s+ε(X) =

1

N limk→∞ f̃k
s

∫

RN×J

lim
k→∞

f̃kdX.

Assumption 3. For T > 0, let µ(s,β,X) : C0([0, T ],RJ ,RN×J) → L(Rn,RJ ,RN×J) and
σ(s,β,X) : C0([0, T ],RJ ,RN×J) → L(Rn,RJ ,RN×J) be some measurable function and, for
some positive constant K1 and, X ∈ RN×J we have linear growth of β as

|µ(s,β,X)|+ |σ(s,β,X)| ≤ K1(1 + |X|),
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such that, there exists another positive, finite, constant K2 and for a different vector X̃(N×J)×1

such that the Lipschitz condition,

|µ(s,β,X)− µ(s,β, X̃)|+ |σ(s,β,X)− σ(s,β, X̃)| ≤ K2 |X− X̃|,

X̃ ∈ RN×J is satisfied and

|µ(s,β,X)|2 + ‖σ(s,β,X)‖2 ≤ K2
2(1 + |X̃|2),

where ‖σ(s,β,X)‖2 =
∑N

i=1

∑N
j=1 |σij(s,β,X)|2.

Assumption 4. There exists a probability space (Ω,FX
s ,P) with sample space Ω, filtration at

time s of independent variable X as {FX
s } ⊂ Fs, a probability measure P and a p-dimensional

{Fs} Brownian motion B where the measure of the regression coefficient β is an {FX
s } adapted

process such that Assumption 3 holds.

4. Main Results

The objective function is,

min
{β′

j∈β}
XO(s,β,X) = min

{β′
j∈β}

E
∫ T

0

N∑
i=1

[
Yi(s)−

J∑
j′=1

βj′(s)Xij′(s)

]2

ds, (4)

In Equation (4), βj is the coefficient of independent variable Xij for all i = 1, ..., N and j′ =
1, ..., J .

Lemma 1. Suppose time interval [0, T ] and RN×J are completely regular space such that the
space T = [0, T ] × RN×J is also completely regular and all the compact subsets in it have
Euclidean metrics and let a measure ρn ∈ M(Ω×T ) converges towards a measure ρ ∈ M(Ω×T )
and is uniformly bounded in the variation norm. If the projections of the measure |ρn| and |ρ|
on T are uniformly tight and the projections of the measures |ρn| on Ω are uniformly countably
additive, then

lim
n→∞

Es

∫ τ

s

f̂dρn = E
∫ T

0

f̂dρ, (5)

where n is the total number of small equal in length subintervals [s, τ ] of [0, T ] and the continuous
bounded P ⊗ B(T )-Borel measurable function f̂ such that,

∫ τ

s

f̂dρn =

∫ τ

s




N∑
i=1

[
Yi(ν)−

J∑
j′=1

βj′(ν)Xij′(ν)

]2

dν

+ λ[∆U(ν)− µ[ν,β(ν),X(ν)]dν − σ[ν,β(ν),X(ν)]dB(ν)]

}
,

where P is the probability measure on the Borel σ-algebra B(T ).

Lemma 2. Suppose, for ε ↓ 0, Ψs,s+ε approximated to a linear function on Fs within the small
time interval [s, s + ε] such that, Assumptions 1-4, Lemma 1 hold and for f̃ ≥ 0 we have
Ψs,s+ε(X) , limk→∞ Ψk

s,s+ε(X) → 0 for every monotonically decreasing sequence f̃k ∈ Fs. Then
there exists a unique measure N−1

s dX generated by the filtration FX
s starting at X0 ∈ RN×J

such that FX
s ⊆ Fs and

Ψs,s+ε(X) =
1

Ns

∫

RN×J

f̃dX, ∀f̃ ∈ Fs,

where f̃ = exp [−εLs,s+ε(X)] Ψs(X).
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Proposition 1. If the objective is to minimize Equation (4) subject to the error dynamics

dU(s) = µ[s,β(s),X(s)]ds+ σ[s,β(s),X(s)]dB(s), (6)

with Assumptions 1-4 and, Lemmas 1, 2, then under continuous time, for {i, j} = {1, ..., N}2,
j′ = 1, ...J , Xij′’s regression coefficient is found by solving the Equation

2
N∑
i=1

[
Yi(s)−

J∑
j′=1

βj′(s)Xij′(s)

]
Xij′(s)−

∂g[s,X(s)]

∂X

∂µ[s,β(s),X(s)]

∂β(s)

∂β(s)

∂βj′(s)

− 1
2

N∑
i=1

N∑
j=1

∂σij[s,β(s),X(s)]

∂β(s)

∂β(s)

∂βj′

∂2g[s,X(s)]

∂Xij′∂Xjj′
= 0,

for βj′, with initial condition X0(N×J)×1
, where g[s,X(s)] ∈ C2

(
[0, T ]× RN×J

)
with I(s) =

g[s,X(s)] is a positive, non-decreasing penalization function vanishing at infinity which substi-
tutes the coefficient dynamics such that, I(s) is an Itô process.

Example 1. (LASSO). Consider the dynamic objective function expressed in the Equation (2)
subject to the error dynamics

dU(s) =
m∑

j′=1

|βj′(s)|ds+ 2
N∑
i=1

m∑
j′=1

βj′(s)Xij′(s)dB(s),

where B(s) is the constant Brownian motion of this system. The main reason of not taking
a squared root in the diffusion coefficient is βj′(s) is small in magnitude. We further assume
independent variables evolves exponentially. Therefore, for a positive penalization parameter λ∗,
we assume g(s,Xij′) = λ∗ exp(sXij′) where

∂
∂Xij′

g(s,Xij′) = sg(s,Xij′) and
∂2

∂X2
ij′
g(s,Xij′) =

s2g(s,Xij′). Furthermore, without loss of generality we assume m = J and our main concern is
to find the optimal coefficient, we assume βk �= 0 for any k = 1, ..., J . Therefore, ∂

∂βk
|βk| = βk

|βk|
which is −1 for all βk < 0 and 1 for all βk > 0. By using Proposition 1 we have,

2
N∑
i=1

[
Yi(s)− βk(s)Xik(s)−

J−1∑
j′=1

βj′(s)Xij′(s)

]
Xij′(s)−sg(s,Xij′)

βk

|βk|
−s2

N∑
i=1

Xij′(s)g(s,Xij′) = 0,

which yields,

βk =
1

2
∑N

i=1 X
2
ik(s)

{
2

N∑
i=1

Xij′(s)Yi(s)−2
N∑
i=1

J−1∑
j′=1

βj′(s)Xij′(s)−s

[
g(s,Xij′) + s

N∑
i=1

Xij′g(s,Xij′)

]}
,

for all βk > 0 and
∑N

i=1 X
2
ik(s) �= 0 and,

βk =
1

2
∑N

i=1 X
2
ik(s)

{
2

N∑
i=1

Xij′(s)Yi(s)−2
N∑
i=1

J−1∑
j′=1

βj′(s)Xij′(s)+s

[
g(s,Xij′)− s

N∑
i=1

Xij′g(s,Xij′)

]}
,

for all βk < 0.

Example 2. (Ridge regression). Consider again objective function in Equation (2) subject to

dU(s) =
J∑

j′=1

β2
j′(s)ds+ 2

N∑
i=1

J∑
j′=1

βj′(s)Xij′(s)dB(s).
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Assuming g(s,Xij′) = λ∗ exp(sXij′) for all
∑N

i=1 X
2
ik + sg(s,Xik) �= 0, where k = 1, ..., J ,

Proposition 1 determines the regression coefficient under ridge regression as

βk =
2
[∑N

i=1 Xij′(s)Yi(s)−
∑J−1

j′=1 βj′X
2
ij′

]
− s2

∑N
i=1 Xij′(s)g(s,Xij′)

2
[∑N

i=1 X
2
ik(s) + sg(s,Xik)

] .

Example 3. (Standard Lp-norm). In this framework for all p �= 0 let us assume the error
dynamics as

dU(s) =

[
J∑

j′=1

|βj′(s)|p
] 1

p

ds+ 2
N∑
i=1

J∑
j′=1

βj′(s)Xij′(s)dB(s),

where dB(s) is the constant Brownian motion in this system such that βj′ �= 0 for all j′ =
1, ..., J . If we minimize the Equation (2) subject to the above coefficient dynamics, Proposition
1 with g(s,Xij′) = λ∗ exp(sXij′) gives

2
N∑
i=1

Yi(s)Xij′(s)− 2
N∑
i=1

J∑
j′=1

βj′(s)Xij′(s)

− sg(s,Xij′)

[
J∑

j′=1

|βj′(s)|p
] 1

p
−1 J∑

j′=1

βj′ |βj′ |p−2 − s2
N∑
i=1

Xij′g(s,Xij′) = 0.

Hence, for k = 1, ..., J we have,

2
N∑
i=1

Yi(s)Xij′(s)− 2βk(s)
N∑
i=1

X2
ik(s)

− 2
N∑
i=1

J−1∑
j′=1

βj′(s)Xij′(s)− sg(s,Xik) [|βk(s)|p]
1
p
−1 βk(s)|βk(s)|p−2

− sg(s,Xij′)

[
J−1∑
j′=1

|βj′(s)|p
] 1

p
−1 J−1∑

j′=1

βj′(s)|βj′(s)|p−2 − s2
N∑
i=1

Xij′g(s,Xij′) = 0.

Furthermore, For all βk > 0, βj′ > 0 and
∑N

i=1 Xik(s) �= 0 we have,

βk =
1

2
∑N

i=1 X
2
ik(s)

{
2

N∑
i=1

Yi(s)Xij′(s)− 2
N∑
i=1

J−1∑
j′=1

βj′(s)X
2
ij′(s)

− sg(s,Xij′)

[
J∑

j′=1

βp
j′(s)

] 1
p
−1 J−1∑

j′=1

βp−1
j′ (s)− sg(s,Xik)− s2

N∑
i=1

Xij′(s)g(s,Xij′)

}
,

and when βk < 0 and βj′ < 0 for all j′, k = 1, ..., J , then

βk =
1

2
∑N

i=1 X
2
ik(s)

{
s2

N∑
i=1

Xij′(s)g(s,Xij′)− 2
N∑
i=1

Yi(s)Xij′(s)− 2
N∑
i=1

J−1∑
j′=1

βj′(s)X
2
ij′(s)

− sg(s,Xij′)

[
J∑

j′=1

βp
j′(s)

] 1
p
−1 J−1∑

j′=1

βp−1
j′ (s)− sg(s,Xik)

}
.
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Example 4. (Elastic net regression). In this framework for all α ∈ [0, 1] and βj′ �= 0, ∀j′ =
1, ..., J suppose the error dynamics is

dU(s) =

{
(1− α)

J∑
j′=1

|βj′(s)|+ α

J∑
j′=1

β2
j′(s)

}
ds+ 2

N∑
i=1

J∑
j′=1

βj′(s)Xij′(s)dB(s),

where dB(s) is the constant Brownian motion in this system. If we minimize the Equation (2)
subject to the above coefficient dynamics, Proposition 1 with g(s,Xij′) = λ∗ exp(sXij′) gives

2
N∑
i=1

Yi(s)Xij′(s)− 2βk(s)
N∑
i=1

X2
ik(s)− 2

N∑
i=1

J−1∑
j′=1

βj′(s)X
2
ij′(s)

− 2sg(s,Xij′)

[
(1− α)

βk(s)

|βk(s)|
+ 2αβk(s)

]
− s2

N∑
i=1

Xij′(s)g(s,Xij′) = 0,

for βk > 0, βj′ > 0 and
∑N

i=1 X
2
ik − sαg(s,Xij′) �= 0 which gives us

βk =
1

2
[∑N

i=1 X
2
ik(s)− sαg(s,Xij′)

]
[
2

N∑
i=1

Yi(s)Xij′(s)

− 2
N∑
i=1

J−1∑
j′=1

βj′(s)X
2
ij′(s)− s(1− α)g(s,Xij′)− s2

N∑
i=1

Xij′(s)g(s,Xij′)

]
,

and, for βk < 0, βj′ < 0

βk =
1

2
[∑N

i=1 X
2
ik(s) + sαg(s,Xij′)

]
[
s2

N∑
i=1

Xij′(s)g(s,Xij′)

− 2
N∑
i=1

Yi(s)Xij′(s)− 2
N∑
i=1

J−1∑
j′=1

βj′(s)X
2
ij′(s)− s(1− α)g(s,Xij′)

]
.

Example 5. (Fused LASSO). In this framework for all α ∈ (0, 1) let us assume the coefficient
dynamics as

dU(s) =

[
α

J∑
j′=1

|βj′(s)|+ (1− α)
J∑

j′=0

|βj′(s)− βj′−1(s)|

]
ds+ 2

N∑
i=1

J∑
j′=1

βj′(s)Xij′(s)dB(s),

where dB(s) is the constant Brownian motion in this system such that βj′ �= 0 for all j′ =
1, ..., J . For a function g(s,Xij′) = λ∗ exp(sXij′) Proposition 1 yields,

2
N∑
i=1

Yi(s)Xij′(s)− 2βk(s)
N∑
i=1

X2
ik(s)− 2

J−1∑
j′=1

βj′(s)X
2
ij′(s)

− sg(s,Xik)

[
α

βk(s)

|βk(s)|
+ (1− α)

βk(s)− βk−1(s)

|βk(s)− βk−1(s)|

]
− s2

N∑
i=1

Xij′(s)g(s,Xij′) = 0.

Furthermore, for
∑N

i=1 X
2
ik(s) �= 0 if βk > 0, βj′ > 0 for all k = 1, ..., J such that βk > βk−1

then

βk =
1

2
∑N

i=1 X
2
ik(s)

[
2

N∑
i=1

Yi(s)Xij′(s)−2
J−1∑
j′=1

βj′(s)X
2
ij′(s)−sg(s,Xik)−s2

N∑
i=1

Xij′(s)g(s,Xij′)

]
,
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if βk > 0, βj′ > 0 such that βk < βk−1 then for
∑N

i=1 X
2
ik �= 0 we have,

βk =
1

2
∑N

i=1 X
2
ik(s)

[
2

N∑
i=1

Yi(s)Xij′(s)−2
J−1∑
j′=1

βj′(s)X
2
ij′(s)+s(1−2α)g(s,Xik)−s2

N∑
i=1

Xij′(s)g(s,Xij′)

]
,

and finally, if βk < 0, βj′ < 0 such that βk �= βk−1 then

βk =
1

2
∑N

i=1 X
2
ik(s)

[
s2

N∑
i=1

Xij′(s)g(s,Xij′)−2
N∑
i=1

Yi(s)Xij′(s)−2
J−1∑
j′=1

βj′(s)X
2
ij′(s)−sg(s,Xik)

]
.

Example 6. (Bridge regression). For all βj′ �= 0, ∀j′ = 0, ..., J suppose the error dynamics is

dU(s) =

{
J∑

j′=1

|βj′(s)|
1
2

}2

ds+ 2
N∑
i=1

J∑
j′=1

βj′(s)Xij′(s)dB(s),

where dB(s) is the constant Brownian motion in this system. If we minimize the Equation (2)
subject to the above coefficient dynamics, Proposition 1 with g(s,Xij′) = λ∗ exp(sXij′) gives

2
N∑
i=1

Yi(s)Xij′(s)− 2
N∑
i=1

J∑
j′=1

βj′(s)X
2
ij′(s)

− sβj′(s)|βj′(s)|−
3
2 g(s,Xij′)

J∑
j′=1

|βj′(s)|
1
2 − s2

N∑
i=1

Xij′(s)g(s,Xij′) = 0.

Furthermore, for all k = 1, ..., J , βk > 0, βj′ > 0 and
∑N

i=1 X
2
ik �= 0 we have,

βk =
1

2
∑N

i=1 X
2
ik(s)

[
2

N∑
i=1

Yi(s)Xij′(s)− 2
N∑
i=1

J−1∑
j′=1

βj′(s)X
2
ij′(s)

− sg(s,Xik)− sβ
− 1

2

j′ (s)g(s,Xij′)
J−1∑
j′=1

β
1
2

j′(s)− s2
N∑
i=1

Xij′(s)g(s,Xij′)

]
,

and for βk < 0, βj′ < 0 and
∑N

i=1 X
2
ik �= 0 we have,

βk =
1

2
∑N

i=1 X
2
ik(s)

[
s2

N∑
i=1

Xij′(s)g(s,Xij′)− 2
N∑
i=1

Yi(s)Xij′(s)

− 2
N∑
i=1

J−1∑
j′=1

βj′(s)X
2
ij′(s)− sg(s,Xik)− sβ

− 1
2

j′ (s)g(s,Xij′)
J−1∑
j′=1

β
1
2

j′(s)

]
.

Example 7. (Group LASSO). For an m-dimensional coefficient vector βj′ with Kj′, an m×m-
dimensional positive definite matrix assume the error dynamics is,

dU(s) =

[
J∑

j′=1

βT
j′(s)Kj(s)βj′(s)

]
ds+ 2

N∑
i=1

J∑
j′=1

βT
j′Xij′(s)dB(s),

where βT
j′ is the transposition of βj′, Xij′ an m × m-dimensional matrix and dB(s) is an m-

dimensional Brownian motion. Using an m-dimensional vector valued function g(s,Xij′) =
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λ∗ exp(s,Xij′) and Proposition 1 we get coefficient vector as,

βk =
1
2

{
N∑
i=1

XT
ik(s)Xik(s) +

[
Kk(s) +KT

k (s)
]
g(s,Xik)

}−1

×
[
2

N∑
i=1

Yi(s)Xij′(s)− 2
N∑
i=1

J−1∑
j′=1

βj′(s)X
T
ij′(s)Xij′(s)

− sg(s,Xij′)
J−1∑
j′=1

[
Kj′(s) +KT

j′(s)
]
βj′(s)− s2

N∑
i=1

Xij′(s)g(s,Xij′)

]
,

Such that
[∑N

i=1 X
T
ik(s)Xik(s) +

[
Kk(s) +KT

k (s)
]
g(s,Xik)

]−1

exists and βk is an m-dimensional

vector where k = 1, ..., J .

Proposition 2. Suppose, under the system of smoothing spline regression our objective is to,

min
{β′

j∈β}
XS(s,β,X) = min

{β′
j∈β}

E
∫ T

0

N∑
i=1

[
Yi(s)−

J∑
j′=1

βj′(s)h[Xij′(s)]

]2

ds, (7)

subject to the error dynamics represented by the Equation (1), where h is a dynamic C2-basis
function such that Assumptions 1- 4, Lemmas 1 and 2 hold. Then under continuous time, for
{i, j} = {1, ..., N}2, j′ = 1, ...J , h[Xij′ ]’s regression coefficient is found by solving the Equation

2
N∑
i=1

[
Yi(s)−

J∑
j′=1

βj′(s)h[Xij′(s)]

]
h[Xij′(s)]−

∂g∗[s,X(s)]

∂X

∂µ[s,β(s),X(s)]

∂β(s)

∂β(s)

∂βj′(s)

− 1
2

N∑
i=1

N∑
j=1

∂σij[s,β(s),X(s)]

∂β(s)

∂β(s)

∂βj′

∂2g[s,X(s)]

∂Xij′∂Xjj′
= 0,

for βj′, with initial condition X0(N×J)×1
, where g∗[s,X(s)] ∈ C2

(
[0, T ]× RN×J

)
with I∗(s) =

g∗[s,X(s)] is a positive, non-decreasing penalization function vanishing at infinity which sub-
stitutes the coefficient dynamics such that, I∗(s) is an Itô process.

Example 8. (Cubic smoothing spline) Consider the objective function in Equation (7) where
h[Xij′(s)] = Xij′(s) +X2

ij′(s) +X3
ij′(s) subject to the error dynamics

dU(s) = [2βj′(s) + 6βj′(s)Xij′(s)] ds+ 2
N∑
i=1

βj′(s)Xij′(s)dB(s),

where B(s) is the Brownian motion under cubic smoothing spline. For a penalization parameter
λ∗ if we assume g∗(s,Xij′) = λ∗ exp(sXij′) then Proposition 2 gives us,

0 = 2
N∑
i=1

{
Yi(s)−

J∑
j′=1

βj′(s)
[
Xij′(s) +X2

ij′(s) +X3
ij′(s)

]}

×
[
Xij′(s) +X2

ij′(s) +X3
ij′(s)

]
− 6sβj′(s)g

∗(s,Xij′)− s2Xij′(s)g
∗(s,Xij′),

for all j′ = 1, ..., J . In this case our kth coefficient would be,

βk =
1

2
{∑N

i=1 [Xik(s) +X2
ik(s) +X3

ik(s)]
2
}
{
2

N∑
i=1

Yi(s)
[
Xij′(s) +X2

ij′(s) +X3
ij′(s)

]

− 2
N∑
i=1

J−1∑
j′=0

βj′(s)
[
Xij′(s) +X2

ij′(s) +X3
ij′(s)

]2 − s2Xij′(s)g(s,Xij′)

}
,
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where
∑N

i=1 [Xik(s) +X2
ik(s) +X3

ik(s)] �= 0.

5. Proofs

5.1. Proof of Lemma 1

Without loss of generality assume absolute value of the quantum Lagrangian |f̂ | ≤ 1 and
||ρn|| ≤ 1, ||ρ|| ≤ 1. Suppose, γT and γΩ denote the projections on T and the sample space Ω,
respectively. As T is a completely regular space, there exists a compact set κ ⊂ T such that
for any ε > 0 and for all n we have that,

|ρn| ◦ γ−1
T (T \ κ) + |ρ| ◦ γ−1

T (T \ κ) ≤ ε.

The space K(κ) is separable because κ is Euclidean metrizable. For every ω ∈ Ω, define a gω as
a continuous function s,X �→ f̂(ω, s,X) on κ. Hence, the mapping g : Ω → K(κ) is Borel. As
the projections of measures on Ω are uniformly countably additive, there exists a probability
measure θ on P with respect to which they have uniformly integral densities. By separability of
K(κ) and applying Lusin’s theorem to the mapping g and measure θ, there is a finite partition
of Ω into sets P1, ...,Pp,Pp+1 ∈ P and functions f̂1, ..., f̂p ∈ K(κ) such that ||Esf̂i||K(κ) ≤ 1,

||Esgω − Esf̂i||K(κ) ≤ ε for all ω ∈ Pi, i ≤ p, and

|ρn| ◦ γ−1
Ω (Pp+1) + |ρ| ◦ γ−1

Ω (Pp+1) ≤ ε, ∀n.

As T is completely regular, every conditional expectation Esf̂i extends to T with the preserva-
tion of the maximum of the absolute value. By assumption, there exists a time interval index
n0 such that the absolute value of the difference between conditional expected integrals of
Esh(ω, s,X) :=

∑p
i=1 IPi

(ω)Esf̂i(s,X) against the measure ρn and ρ does not exceed ε for all
n ≥ n0, where IPi

(ω) is the indicator function on partition Pi on P Bogachev (2007). Fur-

thermore, supX |Esf̂(ω, s,X)− Esh(ω, s,X)| ≤ 2, |Esf̂(ω, sX)− h(ω, s,X)| ≤ ε on ∪p
i=1Pi × κ

with
|ρn| (Ω× (T \ κ)) + |ρ|(Pp+1 × T ) ≤ ε.

It remains to use the estimate∫

Ω×T
|Esf̂ − Esh|d|ρn| ≤

∫

∪p
i=1Pi×κ

|Esf̂ − Esh|d|ρn|+ 4ε ≤ 5ε,

and a similar estimate for ρ. Therefore, for [s, τ ] the Equation (5) holds.

5.2. Proof of Lemma 2

(i). Assumption 2 tells us for small time interval [s, s+ε], f̃ ≤ g̃ and f̃ , g̃ ≥ 0 in Fs two increasing
sequences {f̃k1}k1≥0 and {g̃k2}k2≥0 such that limk1→∞ f̃k1 ≤ limk2→∞ g̃k2 , hence limk1→∞ Ψk1

s,s+ε ≤
limk2→∞ Ψk2

s,s+ε, where

Ψk1
s,s+ε =

1

N
f̃k1
s

∫

RN×J

f̃k1dX

and,

Ψk2
s,s+ε =

1

N
g̃k2
s

∫

RN×J

g̃k2dX.

As f̃k1 ≤ limk2→∞ g̃k2 , the function min(f̃k1 , g̃k2) ∈ Fs is increasing to f̃k1 as k2 → ∞. Which
implies,

Ψk1
s,s+ε = lim

k2→∞

1

N
min(f̃k1 ,g̃k2 )
s

∫

RN×J

min(f̃k1 , g̃k2)dX ≤ lim
k2→∞

Ψk2
s,s+ε.
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From the above condition we know that, for ε → 0, the transition function Ψs,s+ε ∈ F+
s is

independent of the choices of increasing sequences converge in F+
s which makes this well defined.

Hence, the functionals on F+
s ∩ Fs coincides with initial functionals and conditions 1 and 2 of

Assumption 2 hold. If f̃k and g̃k are non-negative in Fs and these sequences are increasing to f̃
and g̃ then, we have two monotonic limits as max(f̃ , g̃) = limk→∞ max(f̃k, g̃k) and min(f̃ , g̃) =
limk→∞ min(f̃k, g̃k). Condition 3 of Assumption 2 implies min(f̃ , g̃) + max(f̃ , g̃) = f̃ + g̃ as we
assume f̃ ≤ g̃. Now consider, the sequence f̃k1,k2 ≥ 0 defined on Fs are increasing to f̃k2 ∈ F+

s

as k1 → ∞. Define g̃k3 := maxk2≤k3 f̃k2,k3 such that g̃k3 ∈ Fs. Therefore, as g̃k3 is an increasing
sequence and for each k2 ≤ k3 we have, g̃k3 ≤ g̃k3+1 and f̃k2,k3 ≤ g̃k3 ≤ f̃k3 . This implies

1

N
g̃k3
s

∫

RN×J

g̃k3dX ≤ 1

N
g̃k3+1
s

∫

RN×J

g̃k3+1dX

and,
1

N
f̃k2,k3
s

∫

RN×J

f̃k2,k3dX ≤ 1

N
g̃k3
s

∫

RN×J

g̃k3dX ≤ 1

N
f̃k3
s

∫

RN×J

f̃k3dX,

as k2 ≤ k3. Hence, limk3→∞ f̃k3 = limk3→∞ g̃k3 ∈ F+
s and

lim
k3→∞

1

N
f̃k3
s

∫

RN×J

f̃k3dX = lim
k3→∞

1

N
g̃k3
s

∫

RN×J

g̃k3dX

=
1

N
limk3→∞ g̃k3
s

∫

RN×J

[
lim

k3→∞
g̃k3

]
dX =

1

N
limk3→∞ f̃k3
s

∫

RN×J

[
lim

k3→∞
f̃k3

]
dX.

Therefore, Condition 4 of Assumption 2 is satisfied.
(ii). Define E as subset of RN×J ×Ω such that the indicator function of this set for [s, s+ ε]

is IE ∈ RN×J ×Ω such that any function operating in E is on F+
s . Now for all E ⊆ RN×J ×Ω

set X(E) = Ψs,s+ε(IE). As IE ∈ F+
s , Condition 3 in Assumption 2 holds and for two partitions

E1, E2 ⊂ E we have that, IE1∩E1 = min(IE1 , IE2) and IE1∪E1 = max(IE1 , IE2). This implies
E is closed with respect to finite unions and intersections. Furthermore, by Condition 4 in
Assumption 2 we can say E is closed with respect to countable unions. As we assume X is a
non-negative monotone additive function hence,

X(E1 ∩ E2) +X(E1 ∪ E2) = X(E1) +X(E2),

such that X = limk→∞ X(Ek) for all monotonically increasing sequences of sets Ek ∈ E. Hence,
there exists a function

X∗(G) = inf{X(E) : E ⊂ RN×J × Ω, G ⊂ E}

which is countably measurable on Riemann class,

A =
{
A ⊂ RN×J : X∗(A) +X∗(RN×J \ A) = K, K ≥ 0

}

and on the Borel class on filtration FX
s ,

B = {B ⊂ Ω : X∗(B) +X∗(Ω \B) = 1} .

Define X as the restriction of X∗ to both A and B.
(iii). Suppose, a set A∗ ⊂ A × B. As f̃ ∈ F+

s , then for all constants c we have {f̃ > c} ∈
RN×J × Ω, since

I[f̃>c] = lim
k→∞

min
[
1, kmax(f̃ − c, 0)

]
.
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Therefore, all functions in F+
s are measurable with respect to the σ-algebra σ(RN×J×Ω). As we

assumed E ⊂ RN×J × Ω, there exist an increasing sequence of non-negative functions f̃k ∈ Fs

such that IE = limk→∞ f̃k and X∗(E) = X(E) = limk→∞ Ψk
s,s+ε. Since X∗(E) +X∗({RN×J ×

Ω}\E) ≥ 1, it is sufficient to prove that, X∗(E)+X∗({RN×J ×Ω}\E) ≤ 1 to show E ∈ A×B.
Hence, it is equivalent to prove

X∗({RN×J × Ω} \ E) ≤ lim
k→∞

Ψs,s+ε(1− f̃k). (8)

As f̃k’s are increasing sequences, 1 − f̃k are decreasing in I{RN×J×Ω}\E. The positive, finite

constant c ∈ (0, 1) × RN×J define a set E = {1 − f̃k > c} contains {RN×J × Ω} \ E and
E ⊂ RN×J × Ω. Hence, the interval on this new indicator function IE ≤ c−1(1− f̃k) implies

X∗({RN×J × Ω} \ E) ≤ X(E) ≤ c−1Ψs,s+ε(1− f̃k),

where constant matrix c−1 has each element inverted in it. After keeping the space RN×J fixed
and letting c → 1 and k → ∞ Inequality (8) is obtained.

(iv). It is important to know that, all the functions in F+
s are Fs-measurable. For E ⊂

RN×J × Ω if f̃ = IE, then

Ψs,s+ε(X) =
1

Ns

∫

RN×J

f̃dX (9)

is satisfied by the way X is defined. Furthermore, Equation (9) holds for any finite linear
combinations of indicators of sets in RN×J × Ω. Suppose, a non-negative function f̃ ∈ F+

s and
f̃ ≤ 1. Then for any k ∈ N, we have that

f̃k :=
2k−1∑
i=1

i2−kI[i2−k<f̃<(i+1)2−k] = 2−k

2−k−1∑
i=1

I[f̃>i2−k],

which follows

Ψk
s,s+ε(X) =

1

N f̃k
s

∫

RN×J

f̃kdX.

From Conditions 1 − 4 in Assumption 2 we know as k → ∞, the left and right hand sides of
the above equality converges to Ψs,s+ε(X) and 1

Ns

∫
RN×J f̃dX respectively. Moreover, as f̃ =

limk→∞ min(f̃ , k) and min(f̃ , k) ∈ F+
s for all f̃ ≥ 0, Equation (9) still holds. Finally, for any

f̃ ∈ Fs, condition f̃ = max(f̃ , 0)−max(−f̃ , 0) holds and the uniqueness of X comes from the
fact that E is closed with respect to finite intersections and it generates a σ-algebra.

5.3. Proof of Proposition 1

Using Equations (4) and (6), with initial condition X0, the Lagrangian of this system is,

L0,T (X) =

∫ T

0

Es




N∑
i=1

[
Yi(s)−

J∑
j′=1

βj′(s)Xij′(s)

]2

ds+ λ[U(s+ ds)−U(s)− µ[s,β(s),X(s)]ds

− σ[s,β(s),X(s)]dB(s)]

}
,

where λ is the time independent Lagrange multiplier which is assumed to be non-negative.
Subdivide [0, T ] into n equal time-intervals [s, s+ε]. For any positive ε and normalizing constant
Ns > 0, define a transition function as

Ψs,s+ε(X) =
1

Ns

∫

RN×J

exp [−εLs,s+ε(X)] Ψs(X)dX, (10)
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where Ψs(X) is the transition function at the beginning of s and 1
Ns

dX is a finite Riemann

measure such that for kth time interval the transition function is,

Ψ0,T (X) =
1

Nn
s

∫

RN×J×n

exp

[
−ε

n∑
k=1

Lk
s,s+ε(X)

]
Ψ0(X)

n∏
k=1

dXk, (11)

with the finite measure N−n
s

∏n
k=1 dX

k and initial transition function Ψ0(X) > 0 for all n ∈ N
Fujiwara (2017). Equations (10) and (11) consider all continuous infinite paths of transition of
X in any two time intervals.
Define ∆U(ν) = U(ν + dν)−U(ν), then Fubuni’s theorem implies,

Ls,τ (X) = Es

∫ τ

s




N∑
i=1

[
Yi(ν)−

J∑
j′=1

βj′(ν)Xij′(ν)

]2

dν

+ λ[∆U(ν)− µ[ν,β(ν),X(ν)]dν − σ[ν,β(ν),X(ν)]dB(ν)]

}
,

where τ = s + ε. As we assume the coefficient dynamics has drift and diffusion parts, X(ν)
is an Itô process, there exists a smooth function g[ν,X(ν)] ∈ C2([0, T ] × RN×J) such that
I(ν) = g[ν,X(ν)] where I(ν) is an Itô process Øksendal (2003). Assuming

g[ν +∆ν,X(ν) + ∆X(ν)] = λ[∆U(ν)− µ[ν,β(ν),X(ν)]dν − σ[ν,β(ν),X(ν)]dB(ν)],

for a very small time interval around s with ε ↓ 0, generalized Itô’s Lemma yields,

εLs,τ (X) = Es


ε

N∑
i=1

[
Yi(s)−

J∑
j′=1

βj′(s)Xij′(s)

]2

+ εg[s,X(s)]

+εgs[s,X(s)] + εgX[s,X(s)]µ[s,β(s),X(s)]

+εgX[s,X(s)]σ[s,β(s),X(s)]∆B(s)

+1
2

N∑
i=1

N∑
j=1

εσij[s,β(s),X(s)]gXiXj
[s,X(s)] + o(ε)

}
,

where σij[s,X(s)] represents {i, j}th component of the variance-covarience matrix, gs = ∂g/∂s,
gX = ∂g/∂X and gXiXj

= ∂2g/(∂Xij′ ∂Xjj′), ∆Bi ∆Bj = δij ε, ∆Bi ε = ε ∆Bi = 0,
and ∆Xi(s) ∆Xj(s) = ε, where δij is the Kronecker delta function. As Es[∆B(s)] = 0 and
Es[o(ε)]/ε → 0, for ε → 0, with the vector of initial conditions X0N×1

dividing throughout by
ε and taking the conditional expectation we get,

Ls,τ (X) =
N∑
i=1

[
Yi(s)−

J∑
j′=1

βj′(s)Xij′(s)

]2

+ g[s,X(s)]

+gs[s,X(s)] + gX[s,X(s)]µ[s,β(s),X(s)]

+1
2

I∑
i=1

I∑
j=1

σij[s,β(s),X(s)]gXiXj
[s,X(s)] + o(1).

Suppose, there exists a vector ξN×1 such that X(s)N×1 = X(τ)N×1 + ξN×1. For a number
0 < η < ∞ assume |ξ| ≤ ηε[XT (s)]−1, which makes ξ a very small number for each ε ↓ 0.
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Furthermore, as dξ is a cylindrical measure,

Ψτ
s(X) + ε

∂Ψτ
s(X)

∂s
+ o(ε) =

1

Ns

∫

RN×J

[
Ψτ

s(X) + ξ
∂Ψτ

s(X)

∂X
+ o(ε)

]
×

exp


−ε




N∑
i=1

[
Yi(s)−

J∑
j′=1

βj′(s)[Xij′(τ) + ξ]

]2

+ g[s,X(τ) + ξ] + gs[s,X(τ) + ξ]

+ gX[s,X(τ) + ξ]µ[s,β(s),X(τ) + ξ]

+1
2

N∑
i=1

N∑
j=1

σij[s,β(s),X(τ) + ξ]gXiXj
[s,X(τ) + ξ]

]}
dξ + o(ε1/2). (12)

After defining a C2 function

f [s,β(s), ξ] =
N∑
i=1

[
Yi(s)−

J∑
j′=1

βj′(s)[Xij′(τ) + ξ]

]2

+g[s,X(τ) + ξ] + gs[s,X(τ) + ξ]

+gX[s,X(τ) + ξ]µ[s,β(s),X(τ) + ξ]

+1
2

N∑
i=1

N∑
j=1

σij[s,β(s),X(τ) + ξ]×

gXiXj
[s,X(τ) + ξ],

Equation (12) becomes,

Ψτ
s(X) + ε

∂Ψτ
s(X)

∂s
=

1

Ns

Ψτ
s(X)

∫

RN×J

exp {−εf [s,β(s), ξ]} dξ

+
1

Ns

∂Ψτ
s(X)

∂X

∫

RN×J

ξ exp {−εf [s,β(s), ξ]} dξ + o(ε1/2). (13)

For ε ↓ 0, ∆X ↓ 0 and

f [s,β(s), ξ] = f [s,β(s),X(τ)] +
N∑
i=1

fXi
[s,β(s),X(τ)][ξij′ −Xij′(τ)]

+ 1
2

N∑
i=1

N∑
j=1

fXiXj
[s,β(s),X(τ)][ξij′ −Xij′(τ)][ξjj′ −Xjj′(τ)] + o(ε). (14)

We assume there exists a symmetric, positive definite and non-singular Hessian matrixΘ(N×J)×(N×J)

and a vector R(N×J)×1 such that,

∫

RN×J

exp{−εf [s,β(s), ξ]}dξ =

√
(2π)N×J

ε|Θ|
exp{−εf [s,β(s),X(τ)] + 1

2
εRTΘ−1R}. (15)

The second Gaussian integral on the right hand side of Equation (13) becomes,

∫

RN×J

ξ exp{−εf [s,β(s), ξ]}dξ =

√
(2π)N×J

ε|Θ|
exp{−εf [s,β(s),X(τ)]

+ 1
2
εRTΘ−1R}[X(τ) + 1

2
(Θ−1 R)]. (16)
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Equations (14), (15) and (16) imply

Ψτ
s(X) + ε

∂Ψτ
s(X)

∂s
=

1

Ns

√
(2π)N×J

ε|Θ|
exp{−εf [s,β(s),X(τ)] + 1

2
εRTΘ−1R}

×
{
Ψτ

s(X) + [X(τ) + 1
2
(Θ−1R)]

∂Ψτ
s(X)

∂X

}
+ o(ε1/2).

Assuming Ns =
√

(2π)N×J/(ε|Θ|) > 0, we get Wick rotated Schrödinger type equation as,

Ψτ
s(X) + ε

∂Ψτ
s(X)

∂s
= {1− εf [s,β(s),X(τ)] + 1

2
εRTΘ−1R}×

{
Ψτ

s(X) + [X(τ) + 1
2
(Θ−1R)]

∂Ψτ
s(X)

∂X

}
+ o(ε1/2). (17)

For any finite positive number η we know X(τ) ≤ ηε|ξT |−1. Then there exists |Θ−1R| ≤
2ηε|1 − ξT |−1 such that for ε ↓ 0 we have,

∣∣X(τ) + 1
2

(Θ−1 R)
∣∣ ≤ ηε and Equation (17)

becomes,
∂Ψτ

s(X)

∂s
= {−f [s,β(s),X(τ)] + 1

2
RTΘ−1R}Ψτ

s(X). (18)

As |Θ−1R| ≤ 2ηε|1 − ξT |−1, where ξT is the transpose of ξ, then at ε ↓ 0 we can ignore the
second term. Therefore, Equation (18) becomes

∂Ψτ
s(X)

∂s
= −f [s,β(s),X(τ)]Ψτ

s(Z),

and the partial derivative with βj′ yields,

− ∂

∂βj′
f [u,β(s),X(τ)]Ψτ

s(X) = 0. (19)

In Equation (19) either Ψτ
s(X) = 0 or ∂

∂βj′
f [s,β(s),X(τ)] = 0. As Ψτ

s(X) is a transition wave

function it cannot be zero. Therefore, the partial derivative with respect to βj′ has to be zero.
We know, X(τ) = X(s)− ξ and for ξ ↓ 0 as we are looking for some stable solution therefore,
in Equation (19) X(τ) can be replaced by X(s). Hence,

f [s,β(s),X(s)] =
N∑
i=1

[
Yi(s)−

J∑
j′=1

βj′(s)Xij′(s)

]2

+g[s,X(s)]+gs[s,X(s)]+gX[s,X(s)]µ[s,β(s),X(s)]

+ 1
2

N∑
i=1

N∑
j=1

σij[s,β(s),X(s)]gXiXj
[s,X(s)]. (20)

Equations (19) and (20) then imply

2
N∑
i=1

[
Yi(s)−

J∑
j′=1

βj′(s)Xij′(s)

]
Xij′(s)− gX[s,X(s)]

∂µ[u,β(s),X(s)]

∂β(s)

∂β(s)

∂βj′(s)

− 1
2

N∑
i=1

N∑
j=1

gXiXj
[s,X(s)]

∂σij[s,β(s),X(s)]

∂β(s)

∂β(s)

∂βj′(s)
= 0. (21)

Optimal βj′(s) can be obtained by solving Equation (21).
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5.4. Proof of Proposition 2

Using Equations (6) and (7), with initial condition X0 with its basis h(X0), the dynamic
Lagrangian action of this system of smoothing spline is,

L∗
0,T (X) =

∫ T

0

Es




N∑
i=1

[
Yi(s)−

J∑
j′=1

βj′(s)h[Xij′(s)]

]2

ds+λ∗[U(s+ds)−U(s)−µ[s,β(s),X(s)]ds

− σ[s,β(s),X(s)]dB(s)]

}
,

where λ∗ is the time independent non-negative penalizing constant. After subdividing [0, T ]
into n equal time-intervals [s, s+ ε] such that for all ε and N∗

s > 0, define a transition function
as

Ψ∗
s,s+ε(X) =

1

N∗
s

∫

RN×J

exp
[
−εL∗

s,s+ε(X)
]
Ψ∗

s(X)dX, (22)

where Ψ∗
s(X) is the transition function at the beginning of s and 1

N∗
s
dX is a finite Riemann

measure such that for kth time interval this transition function is,

Ψ∗
0,T (X) =

1

(N∗
s )

n

∫

RN×J×n

exp

[
−ε

n∑
k=1

Lk∗
s,s+ε(X)

]
Ψ∗

0(X)
n∏

k=1

dXk, (23)

with the finite measure (N∗
s )

−n
∏n

k=1 dX
k and initial transition function Ψ∗

0(X) > 0 for all
n ∈ N. Equations (22) and (23) consider all continuous infinite paths of transition of X in any
two time intervals.
Fubuni’s theorem implies,

L∗
s,τ (X) = Es

∫ τ

s




N∑
i=1

[
Yi(ν)−

J∑
j′=1

βj′(ν)h[Xij′(ν)]

]2

dν

+ λ∗[∆U(ν)− µ[ν,β(ν),X(ν)]dν − σ[ν,β(ν),X(ν)]dB(ν)]

}
,

where τ = s + ε and ∆U(ν) = U(ν + dν) −U(ν). As like before the coefficient dynamics has
drift and diffusion parts, X(ν) is an Itô process, there exists a smooth function g∗[ν,X(ν)] ∈
C2([0, T ]×RN×J) such that I∗(ν) = g∗[ν,X(ν)] where I∗(ν) is an Itô process of the smoothing
spline. Assuming

g∗[ν +∆ν,X(ν) + ∆X(ν)] = λ∗[∆U(ν)− µ[ν,β(ν),X(ν)]dν − σ[ν,β(ν),X(ν)]dB(ν)],

for a very small time interval around s with ε ↓ 0, generalized Itô’s Lemma yields,

εL∗
s,τ (X) = Es


ε

N∑
i=1

[
Yi(s)−

J∑
j′=1

βj′(s)h[Xij′(s)]

]2

+ εg∗[s,X(s)]

+εg∗s [s,X(s)] + εg∗X[s,X(s)]µ[s,β(s),X(s)]

+εg∗X[s,X(s)]σ[s,β(s),X(s)]∆B(s)

+1
2

N∑
i=1

N∑
j=1

εσij[s,β(s),X(s)]g∗XiXj
[s,X(s)] + o(ε)

}
,
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where σij[s,X(s)] represents {i, j}th component of the variance-covarience matrix, g∗s = ∂g∗/∂s,
g∗X = ∂g∗/∂X and g∗XiXj

= ∂2g∗/(∂Xij′ ∂Xjj′), ∆Bi ∆Bj = δij ε, ∆Bi ε = ε ∆Bi = 0,

and ∆Xi(s) ∆Xj(s) = ε, where δij is the Kronecker delta function. As Es[∆B(s)] = 0 and
Es[o(ε)]/ε → 0, for ε ↓ 0, with the vector of initial conditions X0N×1

dividing throughout by ε
and taking the conditional expectation we get,

L∗
s,τ (X) =

N∑
i=1

[
Yi(s)−

J∑
j′=1

βj′(s)h[Xij′(s)]

]2

+ g∗[s,X(s)]

+g∗s [s,X(s)] + g∗X[s,X(s)]µ[s,β(s),X(s)]

+1
2

I∑
i=1

I∑
j=1

σij[s,β(s),X(s)]g∗XiXj
[s,X(s)] + o(1).

Suppose, there exists a vector ξN×1 such that X(s)N×1 = X(τ)N×1 + ξN×1. For a number
0 < η < ∞ assume |ξ| ≤ ηε[XT (s)]−1. Furthermore,

Ψτ∗
s (X) + ε

∂Ψτ∗
s (X)

∂s
+ o(ε) =

1

N∗
s

∫

RN×J

[
Ψτ∗

s (X) + ξ
∂Ψτ∗

s (X)

∂X
+ o(ε)

]

× exp


−ε




N∑
i=1

[
Yi(s)−

J∑
j′=1

βj′(s)h[Xij′(τ) + ξ]

]2

+ g∗[s,X(τ) + ξ] + g∗s [s,X(τ) + ξ]

+ g∗X[s,X(τ) + ξ]µ[s,β(s),X(τ) + ξ]

+1
2

N∑
i=1

N∑
j=1

σij[s,β(s),X(τ) + ξ]g∗XiXj
[s,X(τ) + ξ]

]}
dξ + o(ε1/2). (24)

After defining a C2 function

f ∗[s,β(s), ξ] =
N∑
i=1

[
Yi(s)−

J∑
j′=1

βj′(s)h[Xij′(τ) + ξ]

]2

+g∗[s,X(τ) + ξ] + g∗s [s,X(τ) + ξ]

+g∗X[s,X(τ) + ξ]µ[s,β(s),X(τ) + ξ]

+1
2

N∑
i=1

N∑
j=1

σij[s,β(s),X(τ) + ξ]×

g∗XiXj
[s,X(τ) + ξ],

Equation (24) becomes,

Ψτ∗
s (X) + ε

∂Ψτ∗
s (X)

∂s
=

1

N∗
s

Ψτ∗
s (X)

∫

RN×J

exp {−εf ∗[s,β(s), ξ]} dξ

+
1

N∗
s

∂Ψτ∗
s (X)

∂X

∫

RN×J

ξ exp {−εf ∗[s,β(s), ξ]} dξ + o(ε1/2). (25)

For ε ↓ 0, ∆X ↓ 0 and

f ∗[s,β(s), ξ] = f ∗[s,β(s),X(τ)] +
N∑
i=1

f ∗
Xi
[s,β(s),X(τ)][ξij′ −Xij′(τ)]

+ 1
2

N∑
i=1

N∑
j=1

f ∗
XiXj

[s,β(s),X(τ)][ξij′ −Xij′(τ)][ξjj′ −Xjj′(τ)] + o(ε). (26)
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We assume there exists a symmetric, positive definite and non-singular Hessian matrixΘ(N×J)×(N×J)

and a vector R(N×J)×1 such that,

∫

RN×J

exp{−εf ∗[s,β(s), ξ]}dξ =

√
(2π)N×J

ε|Θ|
exp{−εf ∗[s,β(s),X(τ)] + 1

2
εRTΘ−1R}. (27)

The second Gaussian integral on the right hand side of Equation (25) becomes,

∫

RN×J

ξ exp{−εf ∗[s,β(s), ξ]}dξ =

√
(2π)N×J

ε|Θ|
exp{−εf ∗[s,β(s),X(τ)]

+ 1
2
εRTΘ−1R}[X(τ) + 1

2
(Θ−1 R)]. (28)

Equations (26), (27) and (28) imply

Ψτ∗
s (X) + ε

∂Ψτ∗
s (X)

∂s
=

1

N∗
s

√
(2π)N×J

ε|Θ|
exp{−εf ∗[s,β(s),X(τ)]

+ 1
2
εRTΘ−1R}

{
Ψτ∗

s (X) + [X(τ) + 1
2
(Θ−1R)]

∂Ψτ∗
s (X)

∂X

}
+ o(ε1/2).

Assuming N∗
s =

√
(2π)N×J/(ε|Θ|) > 0, the Wick rotated Schrödinger type equation is,

Ψτ∗
s (X) + ε

∂Ψτ∗
s (X)

∂s
= {1− εf ∗[s,β(s),X(τ)] + 1

2
εRTΘ−1R}×

{
Ψτ∗

s (X) + [X(τ) + 1
2
(Θ−1R)]

∂Ψτ∗
s (X)

∂X

}
+ o(ε1/2). (29)

As X(τ) ≤ ηε|ξT |−1, there exists |Θ−1R| ≤ 2ηε|1− ξT |−1 such that for ε ↓ 0 we have,
∣∣X(τ) +

1
2
(Θ−1 R)

∣∣ ≤ ηε and Equation (29) becomes,

∂Ψτ∗
s (X)

∂s
= {−f ∗[s,β(s),X(τ)] + 1

2
RTΘ−1R}Ψτ∗

s (X).

As |Θ−1R| ≤ 2ηε|1− ξT |−1, where ξT is the transpose of ξ, then we have,

∂Ψτ∗
s (X)

∂s
= −f ∗[s,β(s),X(τ)]Ψτ∗

s (Z),

and the partial derivative with βj′ yields,

− ∂

∂βj′
f ∗[u,β(s),X(τ)]Ψτ∗

s (X) = 0. (30)

In Equation (30) either Ψτ∗
s (X) = 0 or ∂

∂βj′
f ∗[s,β(s),X(τ)] = 0. As Ψτ∗

s (X) is a transition wave

function it cannot be zero. Therefore, the partial derivative with respect to βj′ has to be zero.
We know, X(τ) = X(s)− ξ and for ξ ↓ 0 as we are looking for some stable solution therefore,
in Equation (30) X(τ) can be replaced by X(s). Hence,

f ∗[s,β(s),X(s)] =
N∑
i=1

[
Yi(s)−

J∑
j′=1

βj′(s)h[Xij′(s)]

]2

+ g∗[s,X(s)] + gs[s,X(s)] + g∗X[s,X(s)]µ[s,β(s),X(s)]

+ 1
2

N∑
i=1

N∑
j=1

σij[s,β(s),X(s)]g∗XiXj
[s,X(s)]. (31)
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Equations (30) and (31) then imply

2
N∑
i=1

[
Yi(s)−

J∑
j′=1

βj′(s)h[Xij′(s)]

]
h[Xij′(s)]− g∗X[s,X(s)]

∂µ[u,β(s),X(s)]

∂β(s)

∂β(s)

∂βj′(s)

− 1
2

N∑
i=1

N∑
j=1

g∗XiXj
[s,X(s)]

∂σij[s,β(s),X(s)]

∂β(s)

∂β(s)

∂βj′(s)
= 0. (32)

Optimal βj′(s) can be obtained by solving Equation (32).

6. Discussion

In Lemmas 1 and 2 we show the existence of path integral in penalized regression. Proposition
1 helps us determining the coefficients in more generalized LASSO type frameworks. Then we
provide seven cases to obtain a closed form βk, which are functions of Xik, Xij′ , Yi and βj′ .
Furthermore, in cases like LASSO, standard Lp-norm, elastic net regression, fused LASSO and
bridge regression we assume βj′ ’s are non-zero to get rid of the problem of non-differentiability.
Proposition 2 determines optimal β coefficients under generalized spline environment where
h(Xij′) represents any time dependent basis function and Example 8 considers a dynamic cubic
smoothing spline. Throughout this paper we assume g(s,Xij′) = λ∗ exp(sXij′) and diffusion

coefficient as 2
∑N

i=1 βj′Xij′ to make our result comprehensible and hence, βk’s are easily com-
parable among our eight examples. In our future research we will extend this idea into more
generalized Riemann manifold.
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